Second-Order Linear Dynamic Systems

© R. Eugene Stuffle, Ph.D., M.S.B.A., P.E.

Second-order linear dynamic systems are described by equations of the form:

$$\frac{d^2 y(t)}{dt^2} + 2\zeta \omega_n \frac{dy}{dt} + \omega_n^2 y(t) = A \omega_n^2 z(t)$$
(1.1)

where y(t) is the system response, or output, and z(t) is the forcing function, or input. The symbols adopted here are a commonly used engineering notation, regardless of the field of concern. ζ is called the damping ratio, A is the DC or *static* gain, and ω_n is the natural frequency of the system. Several examples are given below.

Parallel RLC Circuit

Using the elementary component *i*-*v* relationships, we write:

$$v(t) = L \frac{di_L(t)}{dt}$$
(1.2)

$$i_G(t) = Gv(t) = G\left[L\frac{di_L(t)}{dt}\right] = GL\frac{di_L(t)}{dt}$$
(1.3)

$$i_{C}(t) = C \frac{dv(t)}{dt} = C \frac{d}{dt} \left[L \frac{di_{L}(t)}{dt} \right] = CL \frac{d^{2}i_{L}(t)}{dt^{2}}$$
(1.4)

Upon applying Kirchhoff's Current Law

$$i_{C}(t)+i_{G}(t)+i_{L}(t)=i_{S}(t)$$

$$(1.5)$$

we see that this circuit can be described by the second-order linear ordinary differential equation:

$$CL\frac{d^{2}i_{L}(t)}{dt^{2}} + GL\frac{di_{L}(t)}{dt} + i_{L}(t) = i_{S}(t)$$

$$(1.6)$$

$$\frac{d^{2}i_{L}(t)}{dt^{2}} + \frac{G}{C}\frac{di_{L}(t)}{dt} + \frac{1}{LC}i_{L}(t) = \frac{1}{LC}i_{S}(t)$$
(1.7)

or

Comparing this result to equation (1.1), we see that

~

$$\omega_n^2 = \frac{1}{LC} \implies \omega_n = \frac{1}{\sqrt{LC}}$$
 (1.8)

$$A\omega_n^2 = \frac{1}{LC} \quad \Rightarrow \quad A = 1 \tag{1.9}$$

$$2\zeta\omega_n = \frac{G}{C} \implies \zeta = \frac{G}{2\omega_n C} = \frac{G}{2}\sqrt{\frac{L}{C}}$$
 (1.10)

and

Series RLC Circuit

Using the elementary component *i*-*v* relationships, we write:

$$i(t) = C \frac{dv_C(t)}{dt}$$
(1.11)

$$v_{R}(t) = Ri(t) = R\left[C\frac{dv_{C}(t)}{dt}\right] = RC\frac{dv_{C}(t)}{dt}$$
(1.12)

$$v_L(t) = L\frac{di(t)}{dt} = L\frac{d}{dt} \left[C\frac{dv_C(t)}{dt} \right] = LC\frac{d^2v_C(t)}{dt^2}$$
(1.13)

Upon applying Kirchhoff's Voltage Law

$$v_{L}(t) + v_{R}(t) + v_{C}(t) = v_{S}(t)$$
(1.14)

we see that this circuit can be described by the second-order linear ordinary differential equation:

$$LC\frac{d^2v_C(t)}{dt^2} + RC\frac{dv_C(t)}{dt} + v_C(t) = v_S(t)$$
(1.15)

$$\frac{d^2 v_C(t)}{dt^2} + \frac{R}{L} \frac{dv_C(t)}{dt} + \frac{1}{LC} v_C(t) = \frac{1}{LC} v_S(t)$$
(1.16)

or

Comparing this result to equation (1.1), we see that

$$\omega_n^2 = \frac{1}{LC} \quad \Rightarrow \quad \omega_n = \frac{1}{\sqrt{LC}}$$
 (1.17)

$$A\omega_n^2 = \frac{1}{LC} \implies A = 1 \tag{1.18}$$

and
$$2\zeta\omega_n = \frac{R}{L} \implies \zeta = \frac{R}{2\omega_n L} = \frac{R}{2}\sqrt{\frac{C}{L}}$$
 (1.19)

Translational Mechanical System

When f(t) is applied, friction and the spring will resist any motion so that, according to Newton's Second Law of Motion,

$$f(t) - Bv(t) - Kx(t) = Ma(t)$$
(1.20)

where $v(t) = \frac{dx(t)}{dt}$ is the velocity, and $a(t) = \frac{dv(t)}{dt} = \frac{d}{dt} \left[\frac{dx(t)}{dt} \right] = \frac{d^2x(t)}{dt^2}$ is the acceleration.

Substituting these into equation (1.20) yields the second-order linear ordinary differential equation:

$$f(t) - B\frac{dx(t)}{dt} - Kx(t) = M\frac{d^2x(t)}{dt^2}$$
(1.21)

$$\frac{d^2x(t)}{dt^2} + \frac{B}{M}\frac{dx(t)}{dt} + \frac{K}{M}x(t) = \frac{1}{M}f(t)$$
(1.22)

or

verifying that Newton's Second Law of Motion is clearly a mechanical equivalent to Kirchhoff's Laws for electrical circuits. Comparing this result to equation (1.1), we see that

$$\omega_n^2 = \frac{K}{M} \implies \omega_n = \sqrt{\frac{K}{M}}$$
 (1.23)

$$A\omega_n^2 = \frac{1}{M} \implies A = \frac{1}{K}$$
 (1.24)

and
$$2\zeta\omega_n = \frac{B}{M} \implies \zeta = \frac{B}{2\omega_n M} = \frac{B}{2\sqrt{KM}}$$
 (1.25)

Rotational Mechanical System

When T(t) is applied, friction and the spring will resist any motion so that, according to Newton's Second Law of Motion,

$$T(t) - B\omega(t) - K\theta(t) = J\alpha(t)$$
(1.26)

where $\omega(t) = \frac{d\theta(t)}{dt}$ is the angular velocity, and $\alpha(t) = \frac{d\omega(t)}{dt} = \frac{d}{dt} \left[\frac{d\theta(t)}{dt} \right] = \frac{d^2\theta(t)}{dt^2}$ is the

angular acceleration. Substituting these into equation (1.26) yields the second-order linear ordinary differential equation:

$$T(t) - B\frac{d\theta(t)}{dt} - K\theta(t) = J\frac{d^2\theta(t)}{dt^2}$$
(1.27)

$$\frac{d^2\theta(t)}{dt^2} + \frac{B}{J}\frac{d\theta(t)}{dt} + \frac{K}{J}\theta(t) = \frac{1}{J}T(t)$$
(1.28)

which again is clearly analogous to Kirchhoff's Laws for electrical circuits. Comparing this result to equation (1.1), we see that

$$\omega_n^2 = \frac{K}{J} \implies \omega_n = \sqrt{\frac{K}{J}}$$
 (1.29)

$$4\omega_n^2 = \frac{1}{J} \qquad \Longrightarrow \qquad A = \frac{1}{K} \tag{1.30}$$

$$2\zeta\omega_n = \frac{B}{J} \implies \zeta = \frac{B}{2\omega_n J} = \frac{B}{2\sqrt{KJ}}$$
 (1.31)

and

or

Page 7

All of the examples considered here yield equations that are of the form of equation (1.1). Note that, if z(t) = 0, the differential equation is said to be homogeneous, and the system response under that condition is called the *natural* response. If $z(t) \neq 0$, the differential equation is said to be non-homogeneous, and the *complete* response of the system with the forcing function applied is a combination of the *natural* response and additional term(s) called the *forced* response. Sometimes, these are called, respectively, the *complimentary* response and the *particular* response.

Zero-Input (Unforced) Systems

Consider the zero-input (homogeneous) form of equation (1.1):

$$\frac{d^2 y(t)}{dt^2} + 2\zeta \omega_n \frac{dy(t)}{dt} + \omega_n^2 y(t) = 0$$
(1.32)

If we assume that the natural response of the system is exponential, i.e., $y(t) = \beta e^{rt}$, then

$$r^2\beta e^{rt} + 2\zeta\omega_n r\beta e^{rt} + \omega_n^2\beta e^{rt} = 0$$
(1.33)

or

$$\left(r^{2}+2\zeta\omega_{n}r+\omega_{n}^{2}\right)\beta e^{rt}=0$$
(1.34)

which means that

$$r^2 + 2\zeta\omega_n r + \omega_n^2 = 0 \tag{1.35}$$

Equation (1.35) is called the characteristic equation of the system, and it has roots given by:

$$r_{1,2} = \frac{-2\zeta\omega_n \pm \sqrt{(2\zeta\omega_n)^2 - 4\omega_n^2}}{2}$$
$$= -\zeta\omega_n \pm \omega_n \sqrt{\zeta^2 - 1}$$
$$= \left(-\zeta \pm \sqrt{\zeta^2 - 1}\right)\omega_n$$
(1.36)

From this, we will see that there are four distinctly different forms of the solution to equation (1.32), depending on the value of ζ with respect to the number 1.

Case 1

If $\zeta > 1$, then $\zeta^2 - 1 > 0$, and there will be two distinct negative real roots, $r_1 = (-\zeta + \sqrt{\zeta^2 - 1})\omega_n$ and $r_2 = (-\zeta - \sqrt{\zeta^2 - 1})\omega_n$. In this case, the system is said to be *overdamped*, and because there are *two* roots to the characteristic equation, y(t) will have *two* exponential components:

$$y(t) = \beta_1 e^{r_1 t} + \beta_2 e^{r_2 t}$$
(1.37)

To determine the values of β_1 and β_2 note that

$$\dot{y}(t) = \beta_1 r_1 e^{r_1 t} + \beta_2 r_2 e^{r_1 t}$$
(1.38)

Evaluating equations (1.37) and (1.38) at t = 0, we have

$$\beta_1 + \beta_2 = y(0) \tag{1.39}$$

and

$$r_1\beta_1 + r_2\beta_2 = \dot{y}(0) \tag{1.40}$$

These two simultaneous equations can be used to evaluate β_1 and β_2 using Cramer's Rule as follows:

$$\beta_{1} = \frac{\begin{vmatrix} y(0) & 1 \\ \dot{y}(0) & r_{2} \end{vmatrix}}{\begin{vmatrix} 1 & 1 \\ r_{1} & r_{2} \end{vmatrix}} = \frac{r_{2}y(0) - \dot{y}(0)}{r_{2} - r_{1}}$$
(1.41)
$$\beta_{2} = \frac{\begin{vmatrix} 1 & y(0) \\ r_{1} & \dot{y}(0) \end{vmatrix}}{\begin{vmatrix} 1 & 1 \\ r_{1} & r_{2} \end{vmatrix}} = \frac{\dot{y}(0) - r_{1}y(0)}{r_{2} - r_{1}}$$
(1.42)

Example 1.1

As shown by equation (1.7), this parallel RLC circuit can be described by the equation

$$\frac{d^2 i_L}{dt^2} + 20 \frac{d i_L}{dt} + 4 i_L = 0$$
(1.43)

Hence, the characteristic equation is

$$r^2 + 20r + 4 = 0 \tag{1.44}$$

and

$$\omega_n = \frac{1}{\sqrt{1(1/4)}} = 2 \tag{1.45}$$

$$\zeta = \frac{5}{2} \sqrt{\frac{1}{(1/4)}} = 5 \tag{1.46}$$

This is an overdamped system, with

$$r_1 = \left(-5 + \sqrt{25 - 1}\right) 2 \approx -0.202 \tag{1.47}$$

$$r_2 = \left(-5 - \sqrt{25 - 1}\right) 2 \approx -19.798 \tag{1.48}$$

Suppose now that $i_L(0) = 0$ and v(0) = 1. Then, $v(t) = L \frac{di_L(t)}{dt}$, when evaluated at t = 0,

yields $\frac{di_L}{dt}\Big|_{t=0} = \frac{1}{L}v(0) = 1$, and

$$\beta_1 \approx \frac{(-19.798)(0)-1}{-19.798-(-0.202)} \approx \frac{-1}{-19.596} \approx 0.051$$
 (1.49)

$$\beta_2 \approx \frac{1 - (-0.202)(0)}{-19.798 - (-0.202)} \approx \frac{1}{-19.596} \approx -0.051$$
 (1.50)

Hence,

$$i_L(t) \approx 0.051 e^{-0.202t} - 0.051 e^{-19.798t}$$
 A for $t > 0$ (1.51)

To see what this looks like, we can simulate the circuit with PSpice as follows:

Example	1.1				
C 1	0	{1/4	}	IC=1	
G 1	0	1	0	5	
L 1	0	1	IC=0		
.TRAN	1	16	0	1m	UIC
. PROBE					
. END					

The inductor current is:

and the capacitor voltage is:

Example 1.2

As shown by equation (1.16), this series RLC circuit can be described by the equation

$$\frac{d^2 v_C}{dt^2} + 20 \frac{d v_C}{dt} + 4 v_C = 0$$
(1.52)

Hence, the characteristic equation is

$$r^2 + 20r + 4 = 0 \tag{1.53}$$

and

$$\omega_n = \frac{1}{\sqrt{1(1/4)}} = 2 \tag{1.54}$$

$$\zeta = \frac{20}{2} \sqrt{\frac{(1/4)}{1}} = 5 \tag{1.55}$$

This is an overdamped system, with

$$r_1 = \left(-5 + \sqrt{25 - 1}\right) 2 \approx -0.202 \tag{1.56}$$

$$r_2 = \left(-5 - \sqrt{25 - 1}\right) 2 \approx -19.798 \tag{1.57}$$

Suppose now that $v_C(0) = 0$ and i(0) = 1. Then, $i(t) = C \frac{dv_C(t)}{dt}$, when evaluated at t = 0,

yields $\frac{dv_C(t)}{dt}\Big|_{t=0} = \frac{1}{C}i(0) = 4$, and

$$\beta_1 \approx \frac{(-19.798)(0) - 4}{-19.798 - (-0.202)} \approx 0.204$$
 (1.58)

$$\beta_2 \approx \frac{4 - (-0.202)(0)}{-19.798 - (-0.202)} \approx -0.204$$
 (1.59)

Hence,

$$v_{c}(t) \approx 0.204 e^{-0.202t} - 0.204 e^{-19.798t}$$
 V for $t > 0$ (1.60)

To see what this looks like, we can simulate the circuit with PSpice as follows:

Example	1.2		
L O	1	1 IC=1	
R 1	2	20	
C 2	0	$\{1/4\}$	IC=0
.TRAN	1	16 0	1m UIC
.PROBE			
.END			

The capacitor voltage is:

and the inductor current is:

Case 2

If $0 < \zeta < 1$, then $\zeta^2 - 1 < 0$, and there will be two complex conjugate roots, $r_1 = \left(-\zeta + j\sqrt{1-\zeta^2}\right)\omega_n = -\zeta\omega_n + j\omega_d$ and $r_2 = \left(-\zeta - j\sqrt{1-\zeta^2}\right)\omega_n = -\zeta\omega_n - j\omega_d$. In this case, the system is said to be *underdamped*., and the quantity $\omega_d = \omega_n\sqrt{1-\zeta^2}$ is called the *damped* or *ringing* frequency.

As in Case 1, because there are *two* distinct roots to the characteristic equation, y(t) has *two* exponential components:

$$y(t) = \beta_1 e^{(-\zeta \omega_n + j\omega_d)t} + \beta_2 e^{(-\zeta \omega_n - j\omega_d)t}$$

= $e^{-\zeta \omega_n t} \left(\beta_1 e^{j\omega_d t} + \beta_2 e^{-j\omega_d t} \right)$ (1.61)

However, it is usually preferred to use Euler's identity

$$e^{\pm j\theta} = \cos\theta \pm j\sin\theta \tag{1.62}$$

to express y(t) in the alternate form

$$y(t) = e^{-\zeta \omega_n t} \left[\beta_1 \left(\cos \omega_d t + j \sin \omega_d t \right) + \beta_2 \left(\cos \omega_d t - j \sin \omega_d t \right) \right]$$

$$= e^{-\zeta \omega_n t} \left[\left(\beta_1 + \beta_2 \right) \cos \omega_d t + j \left(\beta_1 - \beta_2 \right) \sin \omega_d t \right]$$

$$= e^{-\zeta \omega_n t} \left[B_1 \cos \omega_d t + B_2 \sin \omega_d t \right]$$
 (1.63)

where $B_1 = \beta_1 + \beta_2$ and $B_2 = j(\beta_1 - \beta_2)$.

To determine the values of B_1 and B_2 note that

$$\dot{y}(t) = -\zeta \omega_n e^{-\zeta \omega_n t} \left[B_1 \cos \omega_d t + B_2 \sin \omega_d t \right] + e^{-\zeta \omega_n t} \left[-B_1 \omega_d \sin \omega_d t + B_2 \omega_d \cos \omega_d t \right]$$
(1.64)

Evaluating equations (1.63) and (1.64) at t = 0, we have

$$B_1 = y(0) \tag{1.65}$$

and

$$-\zeta \omega_n B_1 + B_2 \omega_d = \dot{y}(0) \tag{1.66}$$

Thus,

$$B_2 = \frac{\dot{y}(0) + \zeta \omega_n B_1}{\omega_d} = \frac{\dot{y}(0) + \zeta \omega_n y(0)}{\omega_d}$$
(1.67)

Alternately, note that

$$B_1 \cos \omega_d t + B_2 \sin \omega_d t = B_3 \cos(\omega_d t - \phi)$$
(1.68)

where $B_3 = \sqrt{B_1^2 + B_2^2}$ and $\phi = \tan^{-1}\left(\frac{B_2}{B_1}\right)$, so that y(t) can be written in a slightly more

compact form as

$$y(t) = B_3 e^{-\zeta \omega_n t} \cos(\omega_d t - \phi)$$
(1.69)

Example 2.1

As shown by equation (1.7), this parallel RLC circuit can be described by the equation

$$\frac{d^2 i_L}{dt^2} + \frac{4}{5} \frac{d i_L}{dt} + 4 i_L = 0$$
(1.70)

Hence, the characteristic equation is

$$r^2 + \frac{4}{5}r + 4 = 0 \tag{1.71}$$

and

$$\omega_n = 2 \tag{1.72}$$

$$\zeta = \frac{1}{10}\sqrt{4} = 0.2\tag{1.73}$$

$$\omega_d = 2\sqrt{1 - (0.2)^2} \approx 1.960 \tag{1.74}$$

This is an underdamped system, with

$$r_{1,2} \approx -0.400 + j1.960 \tag{1.75}$$

$$r_{1,2} \approx -0.400 - j1.960 \tag{1.76}$$

Suppose now that $i_L(0) = 0$ and v(0) = 1. Then, $v(t) = L \frac{di_L(t)}{dt}$, when evaluated at t = 0,

yields $\frac{di_L(t)}{dt}\Big|_{t=0} = \frac{1}{L}v(0) = 1$, and

$$B_1 = 0$$
 (1.77)

$$B_2 \approx \frac{1 + (0.2)(2)(0)}{1.960} \approx 0.510 \tag{1.78}$$

Hence,

$$i_L(t) \approx 0.510 e^{-0.4t} \sin(1.960t)$$
 A for $t > 0$ (1.79)

To see what this looks like, we can simulate the circuit with PSpice as follows:

Example 2.1		
C 1 0	$\{1/4\}$	IC=1 {1/5}
G 1 0 L 1 0	1 0 1 IC=0	{1/3}
.TRAN 1	16 0	1m UIC
. PROBE . END		

The inductor current is:

and the capacitor voltage is:

Example 2.2

As shown by equation (1.16), this series RLC circuit can be described by the equation

$$\frac{d^2 v_C}{dt^2} + \frac{4}{5} \frac{d v_C}{dt} + 4 v_C = 0$$
(1.80)

Hence, the characteristic equation is

$$r^2 + \frac{4}{5}r + 4 = 0 \tag{1.81}$$

and

$$\omega_n = 2 \tag{1.82}$$

$$\zeta = \frac{2}{5}\sqrt{\frac{1}{4}} = 0.2\tag{1.83}$$

$$\omega_d = 2\sqrt{1 - (0.2)^2} \approx 1.960 \tag{1.84}$$

This is an underdamped system, with

$$r_1 = -0.400 + j1.960 \tag{1.85}$$

$$r_2 = -0.400 - j1.960 \tag{1.86}$$

Suppose now that $v_C(0) = 0$ and i(0) = 1. Then, $i(t) = C \frac{dv_C(t)}{dt}$, when evaluated at t = 0,

yields $\frac{dv_C(t)}{dt}\Big|_{t=0} = \frac{1}{C}i(0) = 4$, and

$$B_1 = 0$$
 (1.87)

$$B_2 \approx \frac{4 + (0.2)(2)(0)}{1.960} \approx 2.041 \tag{1.88}$$

Hence,

$$v_{c}(t) = 2.041e^{-0.4t}\sin(1.960t) \quad V \quad t > 0$$
 (1.89)

To see what this looks like, we can simulate the circuit with PSpice as follows:

Example	2.2			
L O	1	1 IC=1		
R 1	2	{4/5}		
C 2	0	{1/4}	IC=0	
.TRAN	1	16 0	1m	UIC
. PROBE				
. END				

The capacitor voltage is:

and the inductor current is:

Case 3

If $\zeta = 1$, then $\zeta^2 - 1 = 0$, and there will be two identical negative real roots, $r_1 = r_2 = -\omega_n$. In this case, the system is said to be *critically damped*. This case can be considered to be the "borderline" between overdamped and underdamped systems.

The general form of the solution is

$$y(t) = (\beta_1 + \beta_2 t) e^{-\omega_n t}$$
(1.90)

To determine the values of β_1 and β_2 note that

$$\dot{y}(t) = \beta_2 e^{-\omega_n t} - \omega_n \left(\beta_1 + \beta_2 t\right) e^{-\omega_n t}$$
(1.91)

Evaluating equations (1.90) and (1.91) at t = 0, we have

$$\beta_1 = y(0) \tag{1.92}$$

and

$$\beta_2 - \omega_n \beta_1 = \dot{y}(0) \tag{1.93}$$

Thus,

$$\beta_2 = \dot{y}(0) + \omega_n \beta_1 = \dot{y}(0) + \omega_n y(0)$$
(1.94)

Example 3.1

As shown by equation (1.7), this parallel circuit can be described by the equation

$$\frac{d^2 i_L}{dt^2} + 4 \frac{d i_L}{dt} + 4 i_L = 0$$
(1.95)

Hence, the characteristic equation is

$$r^2 + 4r + 4 = 0 \tag{1.96}$$

and

$$\omega_n = 2 \tag{1.97}$$

$$\zeta = \frac{1}{2}\sqrt{4} = 1 \tag{1.98}$$

This is a critically damped system, with

$$r_1 = r_2 = -2 \tag{1.99}$$

Suppose now that $i_L(0) = 0$ and v(0) = 1. Then, $v(t) = L \frac{di_L(t)}{dt}$, when evaluated at t = 0,

yields $\frac{di_L}{dt}\Big|_{t=0} = \frac{1}{L}v(0) = 1$, and

 $\beta_1 = 0 \tag{1.100}$

$$\beta_2 = 1 + (2)(0) = 1 \tag{1.101}$$

Hence,

$$i_L(t) = te^{-2t}$$
 A for $t > 0$ (1.102)

To see what this looks like, we can simulate the circuit with PSpice as follows:

Example	3.1				
C 1	0	{1/4]	}	IC=1	
G 1	0	1	0	1	
L 1	0	1	IC=0		
.TRAN	1	16	0	1m	UIC
. PROBE					
.END					

The inductor current is:

and the capacitor voltage is:

Example 3.2

As shown by equation (1.16), this series RLC circuit can be described by the equation

$$\frac{d^2 v_C}{dt^2} + 4 \frac{d v_C}{dt} + 4 v_C = 0$$
(1.103)

Hence, the characteristic equation is

$$r^2 + 4r + 4 = 0 \tag{1.104}$$

and

$$\omega_n = 2 \tag{1.105}$$

$$\zeta = \frac{4}{2}\sqrt{\frac{1}{4}} = 1 \tag{1.106}$$

This is a critically damped system, with

$$r_1 = r_2 = -2 \tag{1.107}$$

Suppose now that $v_C(0) = 0$ and i(0) = 1. Then, $i(t) = C \frac{dv_C(t)}{dt}$, when evaluated at t = 0,

yields
$$\frac{dv_C(t)}{dt}\Big|_{t=0} = \frac{1}{C}i(0) = 4$$
, and

$$\beta_1 = 0 \tag{1.108}$$

$$\beta_2 = 4 + (2)(0) = 4 \tag{1.109}$$

Hence,

$$v_{C}(t) = 4te^{-2t} \quad \forall t > 0 \tag{1.110}$$

To see what this looks like, we can simulate the circuit with PSpice as follows:

Example	3.2			
L O	1	1 IC:	-1	
R 1	2	4		
C 2	0	$\{1/4\}$	IC=0	0
.TRAN	1	16 0	1m	UIC
. PROBE				
.END				

The capacitor voltage is:

and the inductor current is:

Case 4

If $\zeta = 0$, then $\zeta^2 - 1 = -1$, and there will be two conjugate imaginary roots, $r_{1,2} = \pm j\omega_n$. In this case, the system is said to be *undamped*.

As there are *two* distinct roots to the characteristic equation, y(t) has *two* exponential components

$$y(t) = \beta_1 e^{j\omega_n t} + \beta_2 e^{-j\omega_n t}$$
(1.111)

Here again, as in Case 2, it is usually preferred to use Euler's identity to express y(t) in the alternate form

$$y(t) = \beta_1 (\cos \omega_n t + j \sin \omega_n t) + \beta_2 (\cos \omega_n t - j \sin \omega_n t)$$

= $(\beta_1 + \beta_2) \cos \omega_n t + j (\beta_1 - \beta_2) \sin \omega_n t$ (1.112)
= $B_1 \cos \omega_n t + B_2 \sin \omega_n t$

where $B_1 = \beta_1 + \beta_2$ and $B_2 = j(B_1 - B_2)$.

To determine the values of B_1 and B_2 note that

$$\dot{y}(t) = -\omega_n B_1 \sin \omega_n t + \omega_n B_2 \cos \omega_n t \tag{1.113}$$

Evaluating equations (1.112) and (1.113) at t = 0, we have

$$B_1 = y(0) \tag{1.114}$$

and

$$\omega_n B_2 = \dot{y}(0) \tag{1.115}$$

so that

$$B_2 = \frac{\dot{y}(0)}{\omega_n} \tag{1.116}$$

Alternately, note that

$$B_1 \cos \omega_n t + B_2 \sin \omega_n t = B_3 \cos(\omega_n t - \phi)$$
(1.117)

. .

where $B_3 = \sqrt{B_1^2 + B_2^2}$ and $\phi = \tan^{-1} \left(\frac{B_2}{B_1} \right)$, so that y(t) can be written in a slightly more compact form as

$$y(t) = B_3 \cos(\omega_n t - \phi) \tag{1.118}$$

Example 4.1

+

$$v(t)$$
 = $L = 1/4 \text{ F}$ = $G = 0S$ = $G = 0S$ = $L = 1H \text{ or } v(t)$ = $C = 1/4 \text{ F}$ = $L = 1H$

As shown by equation (1.7), this parallel RLC circuit can be described by the equation

$$\frac{d^2 i_L}{dt^2} + 4i_L = 0 \tag{1.119}$$

Hence, the characteristic equation is

$$r^2 + 4 = 0 \tag{1.120}$$

and

$$\omega_n = 2 \tag{1.121}$$

$$\zeta = 0 \tag{1.122}$$

This is an undamped system, with

$$r_1 = j2$$
 (1.123)

$$r_2 = -j2 \tag{1.124}$$

Suppose now that $i_L(0) = 0$ and v(0) = 1. Then, $v(t) = L \frac{di_L(t)}{dt}$, when evaluated at t = 0,

yields
$$\left. \frac{di_L}{dt} \right|_{t=0} = \frac{1}{L} v(0) = 1$$
, and

$$B_1 = 0$$
 (1.125)

$$B_2 = \frac{1}{2} \tag{1.126}$$

Hence,

$$i_L(t) = \frac{1}{2}\sin 2t$$
 A for $t > 0$ (1.127)

To see what this looks like, we can simulate the circuit with PSpice as follows:

UIC	UIC		C=0	4} IC: 0	{1/4 1 16	4.1 0 0 1	ample 1 RAN PROBE	
-----	-----	--	-----	----------------	-----------------	--------------------	----------------------------	--

The inductor current is:

and the capacitor voltage is:

Example 4.2

As shown by equation (1.16), this series RLC circuit can be described by the equation

$$\frac{d^2 v_C}{dt^2} + 4v_C = 0 \tag{1.128}$$

Hence, the characteristic equation is

$$r^2 + 4 = 0 \tag{1.129}$$

and

$$\omega_n = 2 \tag{1.130}$$

$$\zeta = 0 \tag{1.131}$$

This is an undamped system, with

$$r_1 = j2$$
 (1.132)

$$r_2 = -j2 \tag{1.133}$$

Suppose now that $v_C(0) = 0$ and i(0) = 1. Then, $i(t) = C \frac{dv_C(t)}{dt}$, when evaluated at t = 0,

yields
$$\frac{dv_C(t)}{dt}\Big|_{t=0} = \frac{1}{C}i(0) = 4$$
, and

$$B_1 = 0$$
 (1.134)

$$B_2 = \frac{4}{2} = 2 \tag{1.135}$$

Hence,

$$v_c(t) = 2\sin 2t \quad \forall t > 0$$
 (1.136)

To see what this looks like, we can simulate the circuit with PSpice as follows:

Example 4.2 L 0 2 1 C 2 0 {1, .TRAN 1 16 .PROBE .END

The capacitor voltage is:

and the inductor current is:

Example C 1 G 1 L 1	$\begin{array}{c}1.1\\0\\0\\0\\1\end{array}$	{1/4 1 1	} 0 IC=0	IC=1 5	
. TRAN . PROBE	1	16	0	1m	UIC
.END Example			_		
C 1 G 1	0 0 0	{1/4 1 1	0	IC=1 {1/5	}
L 1 .TRAN	$\begin{array}{c} 0 \\ 1 \end{array}$	1 16	IC=0 0	1m	UIC
. PROBE . END					
Example C 1		{1/4	}	IC=1	
G 1 L 1	0 0 0 1	{1/4 1 1	0 IC=0	1	
. TRAN	1	16	0	1m	UIC
. END	11				
Example C 1	4.1 0 0	{1/4	}	IC=1	
L 1 .TRAN	1	116	IC=0 0	1m	UIC
. PROBE . END					

A comparison of the responses of the four parallel circuit examples (1.1, 2.1, 3.1 and 4.1) is shown below:

Example	1.2				
L 0		1	IC=1		
R 1	1 2 0 1	20			
C 2	0	{1/4]	}	IC=0	
.TRAN	1	16	0	1m	UIC
.PROBE					
.END	2 2				
Example		1	T C 1		
L 0	1 2 0 1		,IC=1		
R 1 C 2	2	{4/5 {1/4 16	} `	тс_0	
.TRAN	1	16	۲ ۵	IC=0 1m	UIC
. PROBE	Ŧ	TO	0	тш	UIC
.END					
Example	3.2				
L 0		1	IC=1		
R 1 C 2	2	4			
C 2	1 2 0 1	$\frac{1}{4}$	}	IC=0	
.TRAN	1	16	0	1m	UIC
. PROBE					
.END	_				
Example	4.2		_		
L 0	2 0 1	1	IC=1		
C2	0		}	IC=0	
.TRAN	T	Тр	0	1m	UIC
. PROBE					
.END					

A comparison of the responses of the four series circuit examples (1.2, 2.2, 3.2 and 4.2) is shown below:

Systems with a Constant Input

Next consider systems with constant input, z(t) = K. In the case of electrical circuits, this means DC sources are applied. Equation (1.1) becomes:

$$\frac{d^2 y(t)}{dt^2} + 2\zeta \omega_n \frac{dy(t)}{dt} + \omega_n^2 y(t) = A \omega_n^2 K$$
(1.137)

If we assume that the natural response of the system is exponential, then $y(t) = \beta e^{rt} + \lambda$, and

$$r^{2}\beta e^{rt} + 2\zeta \omega_{n}r\beta e^{rt} + \omega_{n}^{2}\left(\beta e^{rt} + \lambda\right) = 0$$
(1.138)

or

$$\left(r^{2}+2\zeta\omega_{n}r+\omega_{n}^{2}\right)\beta e^{rt}+\omega_{n}^{2}\lambda=A\omega_{n}^{2}K$$
(1.139)

which means that

$$r^2 + 2\zeta \omega_n r + \omega_n^2 = 0 \tag{1.140}$$

$$\omega_n^2 \lambda = A \omega_n^2 K \quad \Rightarrow \quad \lambda = A K \tag{1.141}$$

Equation (1.140) is called the characteristic equation of the system, and it has roots given by:

$$r_{1,2} = \frac{-2\zeta\omega_n \pm \sqrt{\left(2\zeta\omega_n\right)^2 - 4\omega_n^2}}{2}$$
$$= -\zeta\omega_n \pm \omega_n \sqrt{\zeta^2 - 1}$$
$$= \left(-\zeta \pm \sqrt{\zeta^2 - 1}\right)\omega_n$$
(1.142)

As in the unforced case, we will see that there are four distinctly different forms of the solution to equation (1.137), depending on the value of ζ with respect to the number 1.

Case 1

If $\zeta > 1$, then $\zeta^2 - 1 > 0$, and there will be two distinct negative real roots, $r_1 = (-\zeta + \sqrt{\zeta^2 - 1})\omega_n$ and $r_2 = (-\zeta - \sqrt{\zeta^2 - 1})\omega_n$. In this case, the system is said to be *overdamped*, and because there are *two* roots to the characteristic equation, y(t) will have *two* exponential components:

$$y(t) = \beta_1 e^{r_1 t} + \beta_2 e^{r_2 t} + AK$$
(1.143)

To determine the values of β_1 and β_2 note that

$$\dot{y}(t) = \beta_1 r_1 e^{r_1 t} + \beta_2 r_2 e^{r_1 t}$$
(1.144)

Evaluating equations (1.143) and (1.144) at t = 0, we have

$$\beta_1 + \beta_2 + AK = y(0) \tag{1.145}$$

and

$$r_1\beta_1 + r_2\beta_2 = \dot{y}(0) \tag{1.146}$$

These two simultaneous equations can be used to evaluate β_1 and β_2 using Cramer's Rule as follows:

$$\beta_{1} = \frac{\begin{vmatrix} y(0) - AK & 1 \\ \dot{y}(0) & r_{2} \end{vmatrix}}{\begin{vmatrix} 1 & 1 \\ r_{1} & r_{2} \end{vmatrix}} = \frac{r_{2} \begin{bmatrix} y(0) - AK \end{bmatrix} - \dot{y}(0)}{r_{2} - r_{1}}$$
(1.147)
$$\beta_{2} = \frac{\begin{vmatrix} 1 & y(0) - AK \\ r_{1} & \dot{y}(0) \end{vmatrix}}{\begin{vmatrix} 1 & 1 \\ r_{1} & r_{2} \end{vmatrix}} = \frac{\dot{y}(0) - r_{1} \begin{bmatrix} y(0) - AK \end{bmatrix}}{r_{2} - r_{1}}$$
(1.148)

Example 1.1

As shown by equation (1.7), this parallel RLC circuit can be described by the equation

$$\frac{d^2 i_L}{dt^2} + 20 \frac{d i_L}{dt} + 4 i_L = 0$$
(1.149)

Hence, the characteristic equation is

$$r^2 + 20r + 4 = 0 \tag{1.150}$$

and

$$\omega_n = \frac{1}{\sqrt{1(1/4)}} = 2 \tag{1.151}$$

$$\zeta = \frac{5}{2} \sqrt{\frac{1}{(1/4)}} = 5 \tag{1.152}$$

This is an overdamped system, with

$$r_1 = \left(-5 + \sqrt{25 - 1}\right) 2 \approx -0.202 \tag{1.153}$$

$$r_2 = \left(-5 - \sqrt{25 - 1}\right) 2 \approx -19.798 \tag{1.154}$$

Suppose now that $i_L(0) = 0$ and v(0) = 1. Then, $v(t) = L \frac{di_L(t)}{dt}$, when evaluated at t = 0,

yields $\frac{di_L}{dt}\Big|_{t=0} = \frac{1}{L}v(0) = 1$, and

$$\beta_1 \approx \frac{(-19.798)(0)-1}{-19.798-(-0.202)} \approx \frac{-1}{-19.596} \approx 0.051$$
 (1.155)

$$\beta_2 \approx \frac{1 - (-0.202)(0)}{-19.798 - (-0.202)} \approx \frac{1}{-19.596} \approx -0.051$$
 (1.156)

Hence,

$$i_L(t) \approx 0.051 e^{-0.202t} - 0.051 e^{-19.798t}$$
 A for $t > 0$ (1.157)

To see what this looks like, we can simulate the circuit with PSpice as follows:

Example	1.1				
C 1	0	{1/4]	}	IC=1	
G 1	0	1	0	5	
L 1	0	1	IC=0		
.TRAN	1	16	0	1m	UIC
.PROBE					
.END					

The inductor current is:

and the capacitor voltage is:

Example 1.2

As shown by equation (1.16), this series RLC circuit can be described by the equation

$$\frac{d^2 v_C}{dt^2} + 20 \frac{d v_C}{dt} + 4 v_C = 0$$
(1.158)

Hence, the characteristic equation is

$$r^2 + 20r + 4 = 0 \tag{1.159}$$

and

$$\omega_n = \frac{1}{\sqrt{1(1/4)}} = 2 \tag{1.160}$$

$$\zeta = \frac{20}{2} \sqrt{\frac{(1/4)}{1}} = 5 \tag{1.161}$$

This is an overdamped system, with

$$r_1 = \left(-5 + \sqrt{25 - 1}\right) 2 \approx -0.202 \tag{1.162}$$

$$r_2 = \left(-5 - \sqrt{25 - 1}\right) 2 \approx -19.798 \tag{1.163}$$

Suppose now that $v_C(0) = 0$ and i(0) = 1. Then, $i(t) = C \frac{dv_C(t)}{dt}$, when evaluated at t = 0,

yields $\frac{dv_{C}(t)}{dt}\Big|_{t=0} = \frac{1}{C}i(0) = 4$, and

$$\beta_1 \approx \frac{(-19.798)(0) - 4}{-19.798 - (-0.202)} \approx 0.204$$
 (1.164)

$$\beta_2 \approx \frac{4 - (-0.202)(0)}{-19.798 - (-0.202)} \approx -0.204 \tag{1.165}$$

Hence,

$$v_{c}(t) \approx 0.204 e^{-0.202t} - 0.204 e^{-19.798t}$$
 V for $t > 0$ (1.166)

To see what this looks like, we can simulate the circuit with PSpice as follows:

Γ	Exam	ple	1.2							
	L	0	1	1	IC=1					
	R	1	2	20						
	С	2	0	{1/4	}	IC=0				
	.TRA	N	1	16	0	1m	UIC			
	.PRO	BE								
	.END									

The capacitor voltage is:

and the inductor current is:

Case 2

If $0 < \zeta < 1$, then $\zeta^2 - 1 < 0$, and there will be two complex conjugate roots, $r_1 = \left(-\zeta + j\sqrt{1-\zeta^2}\right)\omega_n = -\zeta\omega_n + j\omega_d$ and $r_2 = \left(-\zeta - j\sqrt{1-\zeta^2}\right)\omega_n = -\zeta\omega_n - j\omega_d$. In this case, the system is said to be *underdamped*., and the quantity $\omega_d = \omega_n\sqrt{1-\zeta^2}$ is called the *damped* or *ringing* frequency.

As in Case 1, because there are *two* distinct roots to the characteristic equation, y(t) has *two* exponential components:

$$y(t) = \beta_1 e^{(-\zeta \omega_n + j\omega_d)t} + \beta_2 e^{(-\zeta \omega_n - j\omega_d)t} + AK$$

= $e^{-\zeta \omega_n t} \left(\beta_1 e^{j\omega_d t} + \beta_2 e^{-j\omega_d t} \right) + AK$ (1.167)

However, it is usually preferred to use Euler's identity

$$e^{\pm j\theta} = \cos\theta \pm j\sin\theta \tag{1.168}$$

to express y(t) in the alternate form

$$y(t) = e^{-\zeta \omega_n t} \left[\beta_1 \left(\cos \omega_d t + j \sin \omega_d t \right) + \beta_2 \left(\cos \omega_d t - j \sin \omega_d t \right) \right] + AK$$

$$= e^{-\zeta \omega_n t} \left[\left(\beta_1 + \beta_2 \right) \cos \omega_d t + j \left(\beta_1 - \beta_2 \right) \sin \omega_d t \right] + AK$$
(1.169)
$$= e^{-\zeta \omega_n t} \left[B_1 \cos \omega_d t + B_2 \sin \omega_d t \right] + AK$$

where $B_1 = \beta_1 + \beta_2$ and $B_2 = j(\beta_1 - \beta_2)$.

To determine the values of B_1 and B_2 note that

$$\dot{y}(t) = -\zeta \omega_n e^{-\zeta \omega_n t} \left[B_1 \cos \omega_d t + B_2 \sin \omega_d t \right] + e^{-\zeta \omega_n t} \left[-B_1 \omega_d \sin \omega_d t + B_2 \omega_d \cos \omega_d t \right] \quad (1.170)$$

Evaluating equations (1.169) and (1.170) at t = 0, we have

$$B_1 + AK = y(0) \tag{1.171}$$

and

$$-\zeta \omega_n B_1 + B_2 \omega_d = \dot{y}(0) \tag{1.172}$$

Thus,

$$B_1 = y(0) - AK \tag{1.173}$$

and

$$B_2 = \frac{\dot{y}(0) + \zeta \omega_n B_1}{\omega_d} = \frac{\dot{y}(0) + \zeta \omega_n \left[y(0) - AK \right]}{\omega_d}$$
(1.174)

Alternately, note that

$$B_1 \cos \omega_d t + B_2 \sin \omega_d t = B_3 \cos(\omega_d t - \phi)$$
(1.175)

where $B_3 = \sqrt{B_1^2 + B_2^2}$ and $\phi = \tan^{-1}\left(\frac{B_2}{B_1}\right)$, so that y(t) can be written in a slightly more

compact form as

$$y(t) = B_3 e^{-\zeta \omega_n t} \cos(\omega_d t - \phi) + AK$$
(1.176)

Example 2.1

As shown by equation (1.7), this parallel RLC circuit can be described by the equation

$$\frac{d^2 i_L}{dt^2} + \frac{4}{5} \frac{d i_L}{dt} + 4 i_L = 0$$
(1.177)

Hence, the characteristic equation is

$$r^2 + \frac{4}{5}r + 4 = 0 \tag{1.178}$$

and

$$\omega_n = 2 \tag{1.179}$$

$$\zeta = \frac{1}{10}\sqrt{4} = 0.2\tag{1.180}$$

$$\omega_d = 2\sqrt{1 - (0.2)^2} \approx 1.960 \tag{1.181}$$

This is an underdamped system, with

$$r_{1,2} \approx -0.400 + j1.960 \tag{1.182}$$

$$r_{1,2} \approx -0.400 - j1.960 \tag{1.183}$$

Suppose now that $i_L(0) = 0$ and v(0) = 1. Then, $v(t) = L \frac{di_L(t)}{dt}$, when evaluated at t = 0,

yields $\frac{di_L(t)}{dt}\Big|_{t=0} = \frac{1}{L}v(0) = 1$, and

$$B_1 = 0$$
 (1.184)

$$B_2 \approx \frac{1 + (0.2)(2)(0)}{1.960} \approx 0.510$$
 (1.185)

Hence,

$$i_L(t) \approx 0.510 e^{-0.4t} \sin(1.960t)$$
 A for $t > 0$ (1.186)

To see what this looks like, we can simulate the circuit with PSpice as follows:

Example 2.1		
C 1 0	$\{1/4\}$	IC=1 {1/5}
G 1 0 L 1 0	1 0 1 IC=0	{1/3}
.TRAN 1	16 0	1m UIC
. PROBE . END		

The inductor current is:

and the capacitor voltage is:

Example 2.2

As shown by equation (1.16), this series RLC circuit can be described by the equation

$$\frac{d^2 v_C}{dt^2} + \frac{4}{5} \frac{d v_C}{dt} + 4 v_C = 0$$
(1.187)

Hence, the characteristic equation is

$$r^2 + \frac{4}{5}r + 4 = 0 \tag{1.188}$$

and

$$\omega_n = 2 \tag{1.189}$$

$$\zeta = \frac{2}{5}\sqrt{\frac{1}{4}} = 0.2\tag{1.190}$$

$$\omega_d = 2\sqrt{1 - (0.2)^2} \approx 1.960 \tag{1.191}$$

This is an underdamped system, with

$$r_1 = -0.400 + j1.960 \tag{1.192}$$

$$r_2 = -0.400 - j1.960 \tag{1.193}$$

Suppose now that $v_C(0) = 0$ and i(0) = 1. Then, $i(t) = C \frac{dv_C(t)}{dt}$, when evaluated at t = 0,

yields $\frac{dv_C(t)}{dt}\Big|_{t=0} = \frac{1}{C}i(0) = 4$, and

$$B_1 = 0$$
 (1.194)

$$B_2 \approx \frac{4 + (0.2)(2)(0)}{1.960} \approx 2.041 \tag{1.195}$$

Hence,

$$v_{c}(t) = 2.041e^{-0.4t}\sin(1.960t) \quad V \quad t > 0$$
 (1.196)

To see what this looks like, we can simulate the circuit with PSpice as follows:

Example	2.2			
L O	1	1 IC=1		
R 1	2	{4/5}		
C 2	0	{1/4}	IC=0	
.TRAN	1	16 0	1m	UIC
. PROBE				
.END				

The capacitor voltage is:

and the inductor current is:

Case 3

If $\zeta = 1$, then $\zeta^2 - 1 = 0$, and there will be two identical negative real roots, $r_1 = r_2 = -\omega_n$. In this case, the system is said to be *critically damped*. This case can be considered to be the "borderline" between overdamped and underdamped systems.

The general form of the solution is

$$y(t) = (\beta_1 + \beta_2 t)e^{-\omega_n t} + AK$$
(1.197)

To determine the values of β_1 and β_2 note that

$$\dot{y}(t) = \beta_2 e^{-\omega_n t} - \omega_n \left(\beta_1 + \beta_2 t\right) e^{-\omega_n t}$$
(1.198)

Evaluating equations (1.197) and (1.198) at t = 0, we have

$$\beta_1 + AK = y(0) \tag{1.199}$$

and

$$\beta_2 - \omega_n \beta_1 = \dot{y}(0) \tag{1.200}$$

Thus,

$$\beta_1 = y(0) - AK \tag{1.201}$$

and

$$\beta_2 = \dot{y}(0) + \omega_n \beta_1 = \dot{y}(0) + \omega_n \left[y(0) - AK \right]$$
(1.202)

Example 3.1

As shown by equation (1.7), this parallel circuit can be described by the equation

$$\frac{d^2 i_L}{dt^2} + 4 \frac{d i_L}{dt} + 4 i_L = 0$$
(1.203)

Hence, the characteristic equation is

$$r^2 + 4r + 4 = 0 \tag{1.204}$$

and

$$\omega_n = 2 \tag{1.205}$$

$$\zeta = \frac{1}{2}\sqrt{4} = 1 \tag{1.206}$$

This is a critically damped system, with

$$r_1 = r_2 = -2 \tag{1.207}$$

Suppose now that $i_L(0) = 0$ and v(0) = 1. Then, $v(t) = L \frac{di_L(t)}{dt}$, when evaluated at t = 0,

yields $\frac{di_L}{dt}\Big|_{t=0} = \frac{1}{L}v(0) = 1$, and

 $\beta_1 = 0 \tag{1.208}$

$$\beta_2 = 1 + (2)(0) = 1 \tag{1.209}$$

Hence,

$$i_L(t) = te^{-2t}$$
 A for $t > 0$ (1.210)

To see what this looks like, we can simulate the circuit with PSpice as follows:

Example	3.1				
C 1	0	{1/4]	}	IC=1	
G 1	0	1	0	1	
L 1	0	1	IC=0		
.TRAN	1	16	0	1m	UIC
. PROBE					
.END					

The inductor current is:

and the capacitor voltage is:

Example 3.2

As shown by equation (1.16), this series RLC circuit can be described by the equation

$$\frac{d^2 v_C}{dt^2} + 4 \frac{d v_C}{dt} + 4 v_C = 0$$
(1.211)

Hence, the characteristic equation is

$$r^2 + 4r + 4 = 0 \tag{1.212}$$

and

$$\omega_n = 2 \tag{1.213}$$

$$\zeta = \frac{4}{2}\sqrt{\frac{1}{4}} = 1 \tag{1.214}$$

This is a critically damped system, with

$$r_1 = r_2 = -2 \tag{1.215}$$

Suppose now that $v_C(0) = 0$ and i(0) = 1. Then, $i(t) = C \frac{dv_C(t)}{dt}$, when evaluated at t = 0,

yields
$$\frac{dv_C(t)}{dt}\Big|_{t=0} = \frac{1}{C}i(0) = 4$$
, and

$$\beta_1 = 0 \tag{1.216}$$

$$\beta_2 = 4 + (2)(0) = 4 \tag{1.217}$$

Hence,

$$v_{C}(t) = 4te^{-2t} \quad \forall t > 0 \tag{1.218}$$

To see what this looks like, we can simulate the circuit with PSpice as follows:

Example	3.2			
L O	1	1 IC:	-1	
R 1	2	4		
C 2	0	$\{1/4\}$	IC=0	0
.TRAN	1	16 0	1m	UIC
. PROBE				
.END				

The capacitor voltage is:

and the inductor current is:

Case 4

If $\zeta = 0$, then $\zeta^2 - 1 = -1$, and there will be two conjugate imaginary roots, $r_{1,2} = \pm j\omega_n$. In this case, the system is said to be *undamped*.

As there are *two* distinct roots to the characteristic equation, y(t) has *two* exponential components

$$y(t) = \beta_1 e^{j\omega_n t} + \beta_2 e^{-j\omega_n t} + AK$$
(1.219)

Here again, as in Case 2, it is usually preferred to use Euler's identity to express y(t) in the alternate form

$$y(t) = \beta_1 (\cos \omega_n t + j \sin \omega_n t) + \beta_2 (\cos \omega_n t - j \sin \omega_n t) + AK$$

= $(\beta_1 + \beta_2) \cos \omega_n t + j (\beta_1 - \beta_2) \sin \omega_n t + AK$ (1.220)
= $B_1 \cos \omega_n t + B_2 \sin \omega_n t + AK$

where $B_1 = \beta_1 + \beta_2$ and $B_2 = j(B_1 - B_2)$.

To determine the values of B_1 and B_2 note that

$$\dot{y}(t) = -\omega_n B_1 \sin \omega_n t + \omega_n B_2 \cos \omega_n t \qquad (1.221)$$

Evaluating equations (1.220) and (1.221) at t = 0, we have

$$B_1 + AK = y(0) (1.222)$$

and

$$\omega_n B_2 = \dot{y}(0) \tag{1.223}$$

so that

$$B_1 = y(0) - AK (1.224)$$

and

$$B_2 = \frac{\dot{y}(0)}{\omega_n} \tag{1.225}$$

Alternately, note that

$$B_1 \cos \omega_n t + B_2 \sin \omega_n t = B_3 \cos(\omega_n t - \phi)$$
(1.226)

where $B_3 = \sqrt{B_1^2 + B_2^2}$ and $\phi = \tan^{-1} \left(\frac{B_2}{B_1} \right)$, so that y(t) can be written in a slightly more compact form as

$$y(t) = B_3 \cos(\omega_n t - \phi) + AK \tag{1.227}$$

Example 4.1

+

$$v(t)$$
 = $L = 1/4 \text{ F}$ = $G = 0S$ = $G = 0S$ = $L = 1H \text{ or } v(t)$ = $C = 1/4 \text{ F}$ = $L = 1H$

As shown by equation (1.7), this parallel RLC circuit can be described by the equation

$$\frac{d^2 i_L}{dt^2} + 4i_L = 0 \tag{1.228}$$

Hence, the characteristic equation is

$$r^2 + 4 = 0 \tag{1.229}$$

and

$$\omega_n = 2 \tag{1.230}$$

$$\zeta = 0 \tag{1.231}$$

This is an undamped system, with

$$r_1 = j2$$
 (1.232)

$$r_2 = -j2 \tag{1.233}$$

Suppose now that $i_L(0) = 0$ and v(0) = 1. Then, $v(t) = L \frac{di_L(t)}{dt}$, when evaluated at t = 0,

yields $\left. \frac{di_L}{dt} \right|_{t=0} = \frac{1}{L} v(0) = 1$, and

$$B_1 = 0$$
 (1.234)

$$B_2 = \frac{1}{2} \tag{1.235}$$

Hence,

$$i_L(t) = \frac{1}{2}\sin 2t$$
 A for $t > 0$ (1.236)

To see what this looks like, we can simulate the circuit with PSpice as follows:

UIC	UIC		C=0	4} IC: 0	{1/4 1 16	4.1 0 0 1	ample 1 RAN PROBE	
-----	-----	--	-----	----------------	-----------------	--------------------	----------------------------	--

The inductor current is:

and the capacitor voltage is:

Example 4.2

As shown by equation (1.16), this series RLC circuit can be described by the equation

$$\frac{d^2 v_C}{dt^2} + 4v_C = 0 \tag{1.237}$$

Hence, the characteristic equation is

$$r^2 + 4 = 0 \tag{1.238}$$

and

$$\omega_n = 2 \tag{1.239}$$

$$\zeta = 0 \tag{1.240}$$

This is an undamped system, with

$$r_1 = j2$$
 (1.241)

$$r_2 = -j2$$
 (1.242)

Suppose now that $v_C(0) = 0$ and i(0) = 1. Then, $i(t) = C \frac{dv_C(t)}{dt}$, when evaluated at t = 0,

yields
$$\frac{dv_C(t)}{dt}\Big|_{t=0} = \frac{1}{C}i(0) = 4$$
, and

$$B_1 = 0$$
 (1.243)

$$B_2 = \frac{4}{2} = 2 \tag{1.244}$$

Hence,

$$v_c(t) = 2\sin 2t \quad \forall t > 0$$
 (1.245)

To see what this looks like, we can simulate the circuit with PSpice as follows:

Example 4.2 L 0 2 1 C 2 0 {1, .TRAN 1 16 .PROBE .END

The capacitor voltage is:

and the inductor current is:

Example C 1 G 1 L 1	$\begin{array}{c}1.1\\0\\0\\0\\1\end{array}$	{1/4 1 1	} 0 IC=0	IC=1 5	
. TRAN . PROBE	1	16	0	1m	UIC
.END Example			_		
C 1 G 1	0 0 0	{1/4 1 1	0	IC=1 {1/5	}
L 1 .TRAN	$\begin{array}{c} 0 \\ 1 \end{array}$	1 16	IC=0 0	1m	UIC
. PROBE . END					
Example C 1		{1/4	}	IC=1	
G 1 L 1	0 0 0 1	{1/4 1 1	0 IC=0	1	
. TRAN	1	16	0	1m	UIC
. END	11				
Example C 1	4.1 0 0	{1/4	}	IC=1	
L 1 .TRAN	1	1 16	IC=0 0	1m	UIC
. PROBE . END					

A comparison of the responses of the four parallel circuit examples (1.1, 2.1, 3.1 and 4.1) is shown below:

Example					
L 0 R 1	1 2 0 1	1 20	IC=1		
R 1 C 2	0	$\frac{20}{1/4}$	}	IC=0	
.TRAN	1	Ì6	0	1m	UIC
. PROBE					
.END Example	2.2				
L O		1	IC=1		
R 1	1 2 0	{4/5 {1/4 16	}	TC 0	
C 2 .TRAN	0	{1/4 16	} 0	IC=0 1m	UIC
. PROBE	-	TO	0	T 111	010
.END					
Example L 0		1	IC=1		
R 1	1 2 0 1	4			
C 2	0	{1/4	}	IC=0	
.TRAN	1	16	0	1m	UIC
. PROBE . END					
Example					
L 0	2 0 1	1	JC=1	TC 0	
C 2 .TRAN	0 1	$\frac{1}{1/4}$	} 0	IC=0 1m	UIC
. PROBE	-	τU	0		01C
.END					

A comparison of the responses of the four series circuit examples (1.2, 2.2, 3.2 and 4.2) is shown below:

