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Second-Order Linear Dynamic Systems 
© R. Eugene Stuffle, Ph.D., M.S.B.A., P.E. 

 
 
Second-order linear dynamic systems are described by equations of the form: 

  
 

   
2

2 2

2
2 n n n

d y t dy
y t A z t

dt dt
      (1.1) 

where  y t  is the system response, or output, and  z t  is the forcing function, or input.   The 

symbols adopted here are a commonly used engineering notation, regardless of the field of 
concern.    is called the damping ratio, A  is the DC or static gain, and n  is the natural 

frequency of the system.  Several examples are given below. 
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Parallel RLC Circuit 
 

 

 

 

Using the elementary component i-v relationships, we write: 

  
 Ldi t

v t L
dt

   (1.2) 

     
   L L

G

di t di t
i t Gv t G L GL

dt dt

 
   

 
 (1.3) 

  
     2

2

L L
C

dv t di t d i td
i t C C L CL

dt dt dt dt

 
   

 
  (1.4) 

Upon applying Kirchhoff’s Current Law 

        C G L Si t i t i t i t     (1.5) 

we see that this circuit can be described by the second-order linear ordinary differential equation: 

 
   

   
2

2

L L
L S

d i t di t
CL GL i t i t

dt dt
    (1.6) 

or 
   

   
2

2

1 1L L
L S

d i t di tG
i t i t

dt C dt LC LC
    (1.7) 

Comparing this result to equation (1.1), we see that 

 2 1 1
          n n

LC LC
      (1.8) 

 2 1
          1nA A

LC
      (1.9) 

and  2           
2 2

n

n

G G G L

C C C
 


      (1.10) 
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Series RLC Circuit 
 

 

 

 

 

 

Using the elementary component i-v relationships, we write: 

  
 Cdv t

i t C
dt

   (1.11) 

    
   C C

R

dv t dv t
v t Ri t R C RC

dt dt

 
   

 
  (1.12) 

  
     2

2

C C
L

di t dv t d v td
v t L L C LC

dt dt dt dt

 
   

 
  (1.13) 

Upon applying Kirchhoff’s Voltage Law 

        L R C Sv t v t v t v t     (1.14) 

we see that this circuit can be described by the second-order linear ordinary differential equation: 

 
   

   
2

2

C C
C S

d v t dv t
LC RC v t v t

dt dt
    (1.15)  

or 
   

   
2

2

1 1C C
C S

d v t dv tR
v t v t

dt L dt LC LC
    (1.16) 

Comparing this result to equation (1.1), we see that 

 2 1 1
          n n

LC LC
      (1.17) 

 
2 1

          1nA A
LC

      (1.18) 
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and  2           
2 2

n

n

R R R C

L L L
 


      (1.19) 
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Translational Mechanical System 
 

 

 

 

 

 

 

 

 

When  f t  is applied, friction and the spring will resist any motion so that, according to 

Newton’s Second Law of Motion, 

        f t Bv t Kx t Ma t     (1.20) 

where  
 dx t

v t
dt

  is the velocity, and  
     2

2

dv t dx t d x td
a t

dt dt dt dt

 
   

 
 is the acceleration.  

Substituting these into equation (1.20) yields the second-order linear ordinary differential 

equation: 

  
 

 
 2

2

dx t d x t
f t B Kx t M

dt dt
    (1.21) 

or 
   

   
2

2

1d x t dx tB K
x t f t

dt M dt M M
    (1.22) 

verifying that Newton’s Second Law of Motion is clearly a mechanical equivalent to Kirchhoff’s 

Laws for electrical circuits.  Comparing this result to equation (1.1), we see that 

 2           n n

K K

M M
     (1.23) 

 
2 1 1

          nA A
M K

     (1.24) 
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and  2           
2 2

n

n

B B B

M M KM
 


      (1.25) 
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Rotational Mechanical System 
 

 

 

 

 

 

 

 

When  T t  is applied, friction and the spring will resist any motion so that, according to 

Newton’s Second Law of Motion, 

        T t B t K t J t       (1.26) 

where  
 d t

t
dt


   is the angular velocity, and  

     2

2

d t d t d td
t

dt dt dt dt

  


 
   

 
 is the 

angular acceleration.  Substituting these into equation (1.26) yields the second-order linear 

ordinary differential equation: 

  
 

 
 2

2

d t d t
T t B K t J

dt dt

 
    (1.27) 

or 
   

   
2

2

1d t d tB K
t T t

dt J dt J J

 
    (1.28) 

which again is clearly analogous to Kirchhoff’s Laws for electrical circuits.  Comparing this 

result to equation (1.1), we see that 

 2           n n

K K

J J
      (1.29) 

 
2 1 1

          nA A
J K

      (1.30) 

and  2           
2 2

n

n

B B B

J J KJ
 


      (1.31) 
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All of the examples considered here yield equations that are of the form of equation (1.1).  Note 

that, if   0z t  , the differential equation is said to be homogeneous, and the system response 

under that condition is called the natural response.  If   0z t  , the differential equation is said 

to be non-homogeneous, and the complete response of the system with the forcing function 

applied is a combination of the natural response and additional term(s) called the forced 

response.  Sometimes, these are called, respectively, the complimentary response and the 

particular response. 
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Zero-Input (Unforced) Systems 
 

Consider the zero-input (homogeneous) form of equation (1.1): 

 
   

 
2

2

2
2 0n n

d y t dy t
y t

dt dt
      (1.32) 

If we assume that the natural response of the system is exponential, i.e.,   rty t e , then 

 2 22 0rt rt rt
n nr e r e e        (1.33)  

or  2 22 0rt
n nr r e      (1.34) 

which means that 

 2 22 0n nr r     (1.35) 

Equation (1.35) is called the characteristic equation of the system, and it has roots given by: 

 

 

 

2 2

1,2

2

2

2 2 4

2

1

1

n n n

n n

n

r
  

  

  

  


   

   

  (1.36) 

From this, we will see that there are four distinctly different forms of the solution to equation 

(1.32), depending on the value of   with respect to the number 1. 
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Case 1 

If 1  , then 2 1 0   , and there will be two distinct negative real roots,  2
1 1 nr        

and  2
2 1 nr       .  In this case, the system is said to be overdamped, and because there 

are two roots to the characteristic equation,  y t  will have two exponential components: 

   1 2

1 2
r t r ty t e e     (1.37) 

To determine the values of 1  and 2  note that 

   1 1

1 1 2 2
r t r ty t re r e     (1.38) 

Evaluating equations (1.37) and (1.38) at 0t  , we have 

  1 2 0y     (1.39) 

and  

  1 1 2 2 0r r y      (1.40) 

These two simultaneous equations can be used to evaluate 1  and 2  using Cramer’s Rule as 

follows: 

 

 
     2 2

1

2 1

1 2

0 1

0 0 0

1 1

y

y r r y y

r r

r r




 


 
  (1.41) 

 

 
     1 1

2

2 1

1 2

1 0

0 0 0

1 1

y

r y y r y

r r

r r




 


 
  (1.42) 
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Example 1.1 

 

 

 

As shown by equation (1.7), this parallel RLC circuit can be described by the equation 

 
2

2
20 4 0L L

L

d i di
i

dt dt
     (1.43) 

Hence, the characteristic equation is 

 2 20 4 0r r     (1.44) 

and  

 
 

1
2

1 1 4
n    (1.45) 

 
 

5 1
5

2 1 4
     (1.46) 

This is an overdamped system, with 

  1 5 25 1 2 0.202r         (1.47) 

  2 5 25 1 2 19.798r         (1.48) 

Suppose now that  0 0Li   and  0 1v  .  Then,  
 Ldi t

v t L
dt

 , when evaluated at 0t  , 

yields  
0

1
0 1L

t

di
v

dt L

  , and 

 
   

 1

19.798 0 1 1
0.051

19.798 0.202 19.596


  
  
   

  (1.49) 

 
  

 2

1 0.202 0 1
0.051

19.798 0.202 19.596


 
   
   

  (1.50) 

 Hence, 
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   0.202 19.7980.051 0.051t t
Li t e e    A  for  0t    (1.51) 

To see what this looks like, we can simulate the circuit with PSpice as follows: 

Example 1.1 
C 1 0 {1/4} IC=1 
G 1 0 1 0 5 
L 1 0 1 IC=0 
.TRAN 1 16 0 1m UIC 
.PROBE 
.END 

 

The inductor current is: 

 

and the capacitor voltage is: 
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Example 1.2 

 

 

 

 

As shown by equation (1.16), this series RLC circuit can be described by the equation 

 
2

2
20 4 0C C

C

d v dv
v

dt dt
     (1.52) 

Hence, the characteristic equation is 

 2 20 4 0r r     (1.53) 

and 

 
 

1
2

1 1 4
n     (1.54) 

 
 1 420

5
2 1

     (1.55) 

This is an overdamped system, with 

  1 5 25 1 2 0.202r         (1.56) 

  2 5 25 1 2 19.798r         (1.57) 

Suppose now that  0 0Cv   and  0 1i  .  Then,  
 Cdv t

i t C
dt

 , when evaluated at 0t  , 

yields 
 

 
0

1
0 4C

t

dv t
i

dt C


  , and 

 
   

 1

19.798 0 4
0.204

19.798 0.202


 
 
  

  (1.58) 

 
   

 2

4 0.202 0
0.204

19.798 0.202


 
  
  

  (1.59) 



  
Page 14 

 
  

Hence, 

   0.202 19.7980.204 0.204t t
Cv t e e    V  for  0t    (1.60) 

To see what this looks like, we can simulate the circuit with PSpice as follows: 

Example 1.2 
L 0 1 1 IC=1 
R 1 2 20 
C 2 0 {1/4} IC=0 
.TRAN 1 16 0 1m UIC 
.PROBE 
.END 

 
 
The capacitor voltage is: 
 

 

and the inductor current is: 
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Case 2 

If 0 1  , then 2 1 0   , and there will be two complex conjugate roots, 

 2
1 1 n n dr j j            and  2

2 1 n n dr j j           .  In this case, 

the system is said to be underdamped., and the quantity 21d n     is called the damped or 

ringing frequency. 

As in Case 1, because there are two distinct roots to the characteristic equation,  y t  has two 

exponential components: 

 
     

 
1 2

1 2

n d n d

n d d

j t j t

t j t j t

y t e e

e e e

   

  

 

 

   

 

 

 
  (1.61) 

However, it is usually preferred to use Euler’s identity 

 cos sinje j       (1.62) 

to express  y t  in the alternate form 

 

     

   

 

1 2

1 2 1 2

1 2

cos sin cos sin

cos sin

cos sin

n

n

n

t
d d d d

t
d d

t

d d

y t e t j t t j t

e t j t

e B t B t







     

     

 







     

     

 

  (1.63) 

where 1 1 2B     and  2 1 2B j    . 

To determine the values of 1B  and 2B  note that 

      1 2 1 2cos sin sin cosn nt t
n d d d d d dy t e B t B t e B t B t                (1.64) 

Evaluating equations (1.63) and (1.64) at 0t  , we have 

  1 0B y   (1.65) 

and 

  1 2 0n dB B y       (1.66) 

Thus, 
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     1

2

0 0 0n n

d d

y B y y
B

 

 

 
 
 

  (1.67) 

Alternately, note that 

  1 2 3cos sin cosd d dB t B t B t        (1.68) 

where 2 2
3 1 2B B B   and 1 2

1

tan
B

B
   
  

 
, so that  y t  can be written in a slightly more 

compact form as 

    3 cosnt
dy t B e t      (1.69) 
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Example 2.1 

 

 

 

 

As shown by equation (1.7), this parallel RLC circuit can be described by the equation 

 
2

2

4
4 0

5
L L

L

d i di
i

dt dt
     (1.70) 

Hence, the characteristic equation is 

 2 4
4 0

5
r r     (1.71) 

and 

 2n    (1.72) 

 
1

4 0.2
10

     (1.73) 

  
2

2 1 0.2 1.960d      (1.74) 

This is an underdamped system, with 

 1,2 0.400 1.960r j     (1.75) 

 1,2 0.400 1.960r j     (1.76) 

Suppose now that  0 0Li   and  0 1v  .  Then,  
 Ldi t

v t L
dt

 , when evaluated at 0t  , 

yields 
 

 
0

1
0 1L

t

di t
v

dt L


  , and 

 1 0B    (1.77) 

 
    

2

1 0.2 2 0
0.510

1.960
B


    (1.78) 

1

5
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Hence, 

    0.40.510 sin 1.960t
Li t e t   A  for  0t    (1.79) 

To see what this looks like, we can simulate the circuit with PSpice as follows: 

Example 2.1 
C 1 0 {1/4} IC=1 
G 1 0 1 0 {1/5} 
L 1 0 1 IC=0 
.TRAN 1 16 0 1m UIC 
.PROBE 
.END 

 

The inductor current is: 

 

and the capacitor voltage is: 
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Example 2.2 

 

 

 

 

 

As shown by equation (1.16), this series RLC circuit can be described by the equation 

 
2

2

4
4 0

5
C C

C

d v dv
v

dt dt
     (1.80) 

Hence, the characteristic equation is 

 2 4
4 0

5
r r     (1.81) 

and 

 2n    (1.82) 

 
2 1

0.2
5 4

     (1.83) 

  
2

2 1 0.2 1.960d      (1.84) 

This is an underdamped system, with 

 1 0.400 1.960r j     (1.85) 

 2 0.400 1.960r j     (1.86) 

Suppose now that  0 0Cv   and  0 1i  .  Then,  
 Cdv t

i t C
dt

 , when evaluated at 0t  , 

yields 
 

 
0

1
0 4C

t

dv t
i

dt C


  , and 

 1 0B    (1.87) 
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   

2

4 0.2 2 0
2.041

1.960
B


    (1.88) 

Hence, 

    0.42.041 sin 1.960t
Cv t e t   V  0t   (1.89) 

To see what this looks like, we can simulate the circuit with PSpice as follows: 

Example 2.2 
L 0 1 1 IC=1 
R 1 2 {4/5} 
C 2 0 {1/4} IC=0 
.TRAN 1 16 0 1m UIC 
.PROBE 
.END 

 

The capacitor voltage is: 
 

 

and the inductor current is: 
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Case 3 

If 1  , then 2 1 0   , and there will be two identical negative real roots, 1 2 nr r    .  In this 

case, the system is said to be critically damped.  This case can be considered to be the 

“borderline” between overdamped and underdamped systems. 

The general form of the solution is 

    1 2
nty t t e       (1.90) 

To determine the values of 1  and 2  note that 

    2 1 2
n nt t

ny t e t e          (1.91) 

Evaluating equations (1.90) and (1.91) at 0t  , we have 

  1 0y    (1.92) 

and 

  2 1 0n y       (1.93) 

Thus, 

      2 10 0 0n ny y y          (1.94) 
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Example 3.1 

 

 

 

 

As shown by equation (1.7), this parallel circuit can be described by the equation 

 
2

2
4 4 0L L

L

d i di
i

dt dt
     (1.95) 

Hence, the characteristic equation is 

 2 4 4 0r r     (1.96) 

and 

 2n    (1.97) 

 
1

4 1
2

     (1.98) 

This is a critically damped system, with 

 1 2 2r r     (1.99) 

Suppose now that  0 0Li   and  0 1v  .  Then,  
 Ldi t

v t L
dt

 , when evaluated at 0t  , 

yields  
0

1
0 1L

t

di
v

dt L

  , and 

 1 0    (1.100) 

    2 1 2 0 1      (1.101) 

Hence, 

   2t
Li t te   A  for  0t    (1.102) 
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To see what this looks like, we can simulate the circuit with PSpice as follows: 

Example 3.1 
C 1 0 {1/4} IC=1 
G 1 0 1 0 1 
L 1 0 1 IC=0 
.TRAN 1 16 0 1m UIC 
.PROBE 
.END 

 

The inductor current is: 

 

and the capacitor voltage is: 



  
Page 25 

 
  

Example 3.2 

 

 

 

 

 

As shown by equation (1.16), this series RLC circuit can be described by the equation 

 
2

2
4 4 0C C

C

d v dv
v

dt dt
     (1.103) 

Hence, the characteristic equation is 

 2 4 4 0r r     (1.104) 

and 

 2n    (1.105) 

 
4 1

1
2 4

     (1.106) 

This is a critically damped system, with 

 1 2 2r r     (1.107) 

Suppose now that  0 0Cv   and  0 1i  .  Then,  
 Cdv t

i t C
dt

 , when evaluated at 0t  , 

yields 
 

 
0

1
0 4C

t

dv t
i

dt C


  , and 

 1 0    (1.108) 

   2 4 2 0 4      (1.109) 

Hence, 

   24 t
Cv t te   V  0t    (1.110) 

To see what this looks like, we can simulate the circuit with PSpice as follows: 
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Example 3.2 
L 0 1 1 IC=1 
R 1 2 4 
C 2 0 {1/4} IC=0 
.TRAN 1 16 0 1m UIC 
.PROBE 
.END 

 

The capacitor voltage is: 
 

 

and the inductor current is: 
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Case 4 

If 0  , then 2 1 1    , and there will be two conjugate imaginary roots, 1,2 nr j  .  In this 

case, the system is said to be undamped. 

As there are two distinct roots to the characteristic equation,  y t  has two exponential 

components 

   1 2
n nj t j ty t e e       (1.111) 

Here again, as in Case 2, it is usually preferred to use Euler’s identity to express  y t  in the 

alternate form 

 

     

   
1 2

1 2 1 2

1 2

cos sin cos sin

cos sin

cos sin

n n n n

n n

n n

y t t j t t j t

t j t

B t B t

     

     

 

   

   

 

  (1.112) 

where 1 1 2B     and  2 1 2B j B B  . 

To determine the values of 1B  and 2B  note that 

   1 2sin cosn n n ny t B t B t        (1.113) 

Evaluating equations (1.112) and (1.113) at 0t  , we have 

  1 0B y   (1.114) 

and 

  2 0nB y     (1.115) 

so that 

 
 

2

0

n

y
B





  (1.116) 

Alternately, note that 

  1 2 3cos sin cosn n nB t B t B t        (1.117) 
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where 2 2
3 1 2B B B   and 1 2

1

tan
B

B
   
  

 
, so that  y t  can be written in a slightly more 

compact form as 

    3 cos ny t B t     (1.118) 
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Example 4.1 

 

 

            or 

 

 

As shown by equation (1.7), this parallel RLC circuit can be described by the equation 

 
2

2
4 0L

L

d i
i

dt
    (1.119) 

Hence, the characteristic equation is 

 2 4 0r     (1.120) 

and 

 2n    (1.121) 

 0    (1.122) 

This is an undamped system, with 

 1 2r j   (1.123) 

 2 2r j    (1.124) 

Suppose now that  0 0Li   and  0 1v  .  Then,  
 Ldi t

v t L
dt

 , when evaluated at 0t  , 

yields  
0

1
0 1L

t

di
v

dt L

  , and 

 1 0B    (1.125) 

 2

1

2
B    (1.126) 

Hence, 

  
1

sin 2
2

Li t t   A  for  0t   (1.127) 
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To see what this looks like, we can simulate the circuit with PSpice as follows: 

Example 4.1 
C 1 0 {1/4} IC=1 
L 1 0 1 IC=0 
.TRAN 1 16 0 1m UIC 
.PROBE 
.END 

 

The inductor current is: 

 

and the capacitor voltage is: 
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Example 4.2 

 

 

        or 

 

 

As shown by equation (1.16), this series RLC circuit can be described by the equation 

 
2

2
4 0C

C

d v
v

dt
    (1.128) 

Hence, the characteristic equation is 

 2 4 0r     (1.129) 

and 

 2n    (1.130) 

 0    (1.131) 

This is an undamped system, with 

 1 2r j   (1.132) 

 2 2r j    (1.133) 

Suppose now that  0 0Cv   and  0 1i  .  Then,  
 Cdv t

i t C
dt

 , when evaluated at 0t  , 

yields 
 

 
0

1
0 4C

t

dv t
i

dt C


  , and 

 1 0B    (1.134) 

 2

4
2

2
B     (1.135) 

Hence, 

   2sin 2Cv t t   V  0t   (1.136) 
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To see what this looks like, we can simulate the circuit with PSpice as follows: 

Example 4.2 
L 0 2 1 IC=1 
C 2 0 {1/4} IC=0 
.TRAN 1 16 0 1m UIC 
.PROBE 
.END 

 
 
The capacitor voltage is: 
 

 
 
and the inductor current is: 
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A comparison of the responses of the four parallel circuit examples (1.1, 2.1, 3.1 and 4.1) is 
shown below: 
 
Example 1.1 
C 1 0 {1/4} IC=1 
G 1 0 1 0 5 
L 1 0 1 IC=0 
.TRAN 1 16 0 1m UIC 
.PROBE 
.END 
Example 2.1 
C 1 0 {1/4} IC=1 
G 1 0 1 0 {1/5} 
L 1 0 1 IC=0 
.TRAN 1 16 0 1m UIC 
.PROBE 
.END 
Example 3.1 
C 1 0 {1/4} IC=1 
G 1 0 1 0 1 
L 1 0 1 IC=0 
.TRAN 1 16 0 1m UIC 
.PROBE 
.END 
Example 4.1 
C 1 0 {1/4} IC=1 
L 1 0 1 IC=0 
.TRAN 1 16 0 1m UIC 
.PROBE 
.END 
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A comparison of the responses of the four series circuit examples (1.2, 2.2, 3.2 and 4.2) is shown 
below: 
 
Example 1.2 
L 0 1 1 IC=1 
R 1 2 20 
C 2 0 {1/4} IC=0 
.TRAN 1 16 0 1m UIC 
.PROBE 
.END 
Example 2.2 
L 0 1 1 IC=1 
R 1 2 {4/5} 
C 2 0 {1/4} IC=0 
.TRAN 1 16 0 1m UIC 
.PROBE 
.END 
Example 3.2 
L 0 1 1 IC=1 
R 1 2 4 
C 2 0 {1/4} IC=0 
.TRAN 1 16 0 1m UIC 
.PROBE 
.END 
Example 4.2 
L 0 2 1 IC=1 
C 2 0 {1/4} IC=0 
.TRAN 1 16 0 1m UIC 
.PROBE 
.END 
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Systems with a Constant Input 
 

Next consider systems with constant input,  z t K .  In the case of electrical circuits, this 

means DC sources are applied.  Equation (1.1) becomes: 

 
   

 
2

2 2

2
2 n n n

d y t dy t
y t A K

dt dt
       (1.137) 

If we assume that the natural response of the system is exponential, then   rty t e   , and 

  2 22 0rt rt rt
n nr e r e e          (1.138)  

or  2 2 2 22 rt
n n n nr r e A K          (1.139) 

which means that 

 2 22 0n nr r     (1.140) 

 2 2           n nA K AK        (1.141) 

Equation (1.140) is called the characteristic equation of the system, and it has roots given by: 

 

 

 

2 2

1,2

2

2

2 2 4

2

1

1

n n n

n n

n

r
  

  

  

  


   

   

  (1.142) 

As in the unforced case, we will see that there are four distinctly different forms of the solution 

to equation (1.137), depending on the value of   with respect to the number 1. 
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Case 1 

If 1  , then 2 1 0   , and there will be two distinct negative real roots,  2
1 1 nr        

and  2
2 1 nr       .  In this case, the system is said to be overdamped, and because there 

are two roots to the characteristic equation,  y t  will have two exponential components: 

   1 2

1 2
r t r ty t e e AK      (1.143) 

To determine the values of 1  and 2  note that 

   1 1

1 1 2 2
r t r ty t re r e     (1.144) 

Evaluating equations (1.143) and (1.144) at 0t  , we have 

  1 2 0AK y      (1.145) 

and  

  1 1 2 2 0r r y      (1.146) 

These two simultaneous equations can be used to evaluate 1  and 2  using Cramer’s Rule as 

follows: 

 

 
     2 2

1

2 1

1 2

0 1

0 0 0

1 1

y AK

y r r y AK y

r r

r r





    


 
  (1.147) 

 

 
     1 1

2

2 1

1 2

1 0

0 0 0

1 1

y AK

r y y r y AK

r r

r r





    


 
  (1.148) 
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Example 1.1 

 

 

 

As shown by equation (1.7), this parallel RLC circuit can be described by the equation 

 
2

2
20 4 0L L

L

d i di
i

dt dt
     (1.149) 

Hence, the characteristic equation is 

 2 20 4 0r r     (1.150) 

and  

 
 

1
2

1 1 4
n    (1.151) 

 
 

5 1
5

2 1 4
     (1.152) 

This is an overdamped system, with 

  1 5 25 1 2 0.202r         (1.153) 

  2 5 25 1 2 19.798r         (1.154) 

Suppose now that  0 0Li   and  0 1v  .  Then,  
 Ldi t

v t L
dt

 , when evaluated at 0t  , 

yields  
0

1
0 1L

t

di
v

dt L

  , and 

 
   

 1

19.798 0 1 1
0.051

19.798 0.202 19.596


  
  
   

  (1.155) 

 
  

 2

1 0.202 0 1
0.051

19.798 0.202 19.596


 
   
   

  (1.156) 

 Hence, 
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   0.202 19.7980.051 0.051t t
Li t e e    A  for  0t    (1.157) 

To see what this looks like, we can simulate the circuit with PSpice as follows: 

Example 1.1 
C 1 0 {1/4} IC=1 
G 1 0 1 0 5 
L 1 0 1 IC=0 
.TRAN 1 16 0 1m UIC 
.PROBE 
.END 

 

The inductor current is: 

 

and the capacitor voltage is: 
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Example 1.2 

 

 

 

 

As shown by equation (1.16), this series RLC circuit can be described by the equation 

 
2

2
20 4 0C C

C

d v dv
v

dt dt
     (1.158) 

Hence, the characteristic equation is 

 2 20 4 0r r     (1.159) 

and 

 
 

1
2

1 1 4
n     (1.160) 

 
 1 420

5
2 1

     (1.161) 

This is an overdamped system, with 

  1 5 25 1 2 0.202r         (1.162) 

  2 5 25 1 2 19.798r         (1.163) 

Suppose now that  0 0Cv   and  0 1i  .  Then,  
 Cdv t

i t C
dt

 , when evaluated at 0t  , 

yields 
 

 
0

1
0 4C

t

dv t
i

dt C


  , and 

 
   

 1

19.798 0 4
0.204

19.798 0.202


 
 
  

  (1.164) 

 
   

 2

4 0.202 0
0.204

19.798 0.202


 
  
  

  (1.165) 
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Hence, 

   0.202 19.7980.204 0.204t t
Cv t e e    V  for  0t    (1.166) 

To see what this looks like, we can simulate the circuit with PSpice as follows: 

Example 1.2 
L 0 1 1 IC=1 
R 1 2 20 
C 2 0 {1/4} IC=0 
.TRAN 1 16 0 1m UIC 
.PROBE 
.END 

 
 
The capacitor voltage is: 
 

 

and the inductor current is: 
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Case 2 

If 0 1  , then 2 1 0   , and there will be two complex conjugate roots, 

 2
1 1 n n dr j j            and  2

2 1 n n dr j j           .  In this case, 

the system is said to be underdamped., and the quantity 21d n     is called the damped or 

ringing frequency. 

As in Case 1, because there are two distinct roots to the characteristic equation,  y t  has two 

exponential components: 

 
     

 
1 2

1 2

n d n d

n d d

j t j t

t j t j t

y t e e AK

e e e AK

   

  

 

 

   

 

  

  
  (1.167) 

However, it is usually preferred to use Euler’s identity 

 cos sinje j       (1.168) 

to express  y t  in the alternate form 

 

     

   

 

1 2

1 2 1 2

1 2

cos sin cos sin

cos sin

cos sin

n

n

n

t
d d d d

t
d d

t

d d

y t e t j t t j t AK

e t j t AK

e B t B t AK







     

     

 







      

      

  

  (1.169) 

where 1 1 2B     and  2 1 2B j    . 

To determine the values of 1B  and 2B  note that 

      1 2 1 2cos sin sin cosn nt t
n d d d d d dy t e B t B t e B t B t                (1.170) 

Evaluating equations (1.169) and (1.170) at 0t  , we have 

  1 0B AK y    (1.171) 

and 

  1 2 0n dB B y       (1.172) 

Thus, 

  1 0B y AK    (1.173) 
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and 

 
     1

2

0 00 nn

d d

y y AKy B
B



 

     


  (1.174) 

Alternately, note that 

  1 2 3cos sin cosd d dB t B t B t        (1.175) 

where 2 2
3 1 2B B B   and 1 2

1

tan
B

B
   
  

 
, so that  y t  can be written in a slightly more 

compact form as 

    3 cosnt
dy t B e t AK       (1.176) 
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Example 2.1 

 

 

 

 

As shown by equation (1.7), this parallel RLC circuit can be described by the equation 

 
2

2

4
4 0

5
L L

L

d i di
i

dt dt
     (1.177) 

Hence, the characteristic equation is 

 2 4
4 0

5
r r     (1.178) 

and 

 2n    (1.179) 

 
1

4 0.2
10

     (1.180) 

  
2

2 1 0.2 1.960d      (1.181) 

This is an underdamped system, with 

 1,2 0.400 1.960r j     (1.182) 

 1,2 0.400 1.960r j     (1.183) 

Suppose now that  0 0Li   and  0 1v  .  Then,  
 Ldi t

v t L
dt

 , when evaluated at 0t  , 

yields 
 

 
0

1
0 1L

t

di t
v

dt L


  , and 

 1 0B    (1.184) 

 
    

2

1 0.2 2 0
0.510

1.960
B


    (1.185) 

1

5
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Hence, 

    0.40.510 sin 1.960t
Li t e t   A  for  0t    (1.186) 

To see what this looks like, we can simulate the circuit with PSpice as follows: 

Example 2.1 
C 1 0 {1/4} IC=1 
G 1 0 1 0 {1/5} 
L 1 0 1 IC=0 
.TRAN 1 16 0 1m UIC 
.PROBE 
.END 

 

The inductor current is: 

 

and the capacitor voltage is: 
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Example 2.2 

 

 

 

 

 

As shown by equation (1.16), this series RLC circuit can be described by the equation 

 
2

2

4
4 0

5
C C

C

d v dv
v

dt dt
     (1.187) 

Hence, the characteristic equation is 

 2 4
4 0

5
r r     (1.188) 

and 

 2n    (1.189) 

 
2 1

0.2
5 4

     (1.190) 

  
2

2 1 0.2 1.960d      (1.191) 

This is an underdamped system, with 

 1 0.400 1.960r j     (1.192) 

 2 0.400 1.960r j     (1.193) 

Suppose now that  0 0Cv   and  0 1i  .  Then,  
 Cdv t

i t C
dt

 , when evaluated at 0t  , 

yields 
 

 
0

1
0 4C

t

dv t
i

dt C


  , and 

 1 0B    (1.194) 
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   

2

4 0.2 2 0
2.041

1.960
B


    (1.195) 

Hence, 

    0.42.041 sin 1.960t
Cv t e t   V  0t   (1.196) 

To see what this looks like, we can simulate the circuit with PSpice as follows: 

Example 2.2 
L 0 1 1 IC=1 
R 1 2 {4/5} 
C 2 0 {1/4} IC=0 
.TRAN 1 16 0 1m UIC 
.PROBE 
.END 

 

The capacitor voltage is: 
 

 

and the inductor current is: 
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Case 3 

If 1  , then 2 1 0   , and there will be two identical negative real roots, 1 2 nr r    .  In this 

case, the system is said to be critically damped.  This case can be considered to be the 

“borderline” between overdamped and underdamped systems. 

The general form of the solution is 

    1 2
nty t t e AK       (1.197) 

To determine the values of 1  and 2  note that 

    2 1 2
n nt t

ny t e t e          (1.198) 

Evaluating equations (1.197) and (1.198) at 0t  , we have 

  1 0AK y     (1.199) 

and 

  2 1 0n y       (1.200) 

Thus, 

  1 0y AK     (1.201) 

and 

      2 10 0 0n ny y y AK             (1.202) 
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Example 3.1 

 

 

 

 

As shown by equation (1.7), this parallel circuit can be described by the equation 

 
2

2
4 4 0L L

L

d i di
i

dt dt
     (1.203) 

Hence, the characteristic equation is 

 2 4 4 0r r     (1.204) 

and 

 2n    (1.205) 

 
1

4 1
2

     (1.206) 

This is a critically damped system, with 

 1 2 2r r     (1.207) 

Suppose now that  0 0Li   and  0 1v  .  Then,  
 Ldi t

v t L
dt

 , when evaluated at 0t  , 

yields  
0

1
0 1L

t

di
v

dt L

  , and 

 1 0    (1.208) 

    2 1 2 0 1      (1.209) 

Hence, 

   2t
Li t te   A  for  0t    (1.210) 
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To see what this looks like, we can simulate the circuit with PSpice as follows: 

Example 3.1 
C 1 0 {1/4} IC=1 
G 1 0 1 0 1 
L 1 0 1 IC=0 
.TRAN 1 16 0 1m UIC 
.PROBE 
.END 

 

The inductor current is: 

 

and the capacitor voltage is: 
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Example 3.2 

 

 

 

 

 

As shown by equation (1.16), this series RLC circuit can be described by the equation 

 
2

2
4 4 0C C

C

d v dv
v

dt dt
     (1.211) 

Hence, the characteristic equation is 

 2 4 4 0r r     (1.212) 

and 

 2n    (1.213) 

 
4 1

1
2 4

     (1.214) 

This is a critically damped system, with 

 1 2 2r r     (1.215) 

Suppose now that  0 0Cv   and  0 1i  .  Then,  
 Cdv t

i t C
dt

 , when evaluated at 0t  , 

yields 
 

 
0

1
0 4C

t

dv t
i

dt C


  , and 

 1 0    (1.216) 

   2 4 2 0 4      (1.217) 

Hence, 

   24 t
Cv t te   V  0t    (1.218) 

To see what this looks like, we can simulate the circuit with PSpice as follows: 
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Example 3.2 
L 0 1 1 IC=1 
R 1 2 4 
C 2 0 {1/4} IC=0 
.TRAN 1 16 0 1m UIC 
.PROBE 
.END 

 

The capacitor voltage is: 
 

 

and the inductor current is: 
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Case 4 

If 0  , then 2 1 1    , and there will be two conjugate imaginary roots, 1,2 nr j  .  In this 

case, the system is said to be undamped. 

As there are two distinct roots to the characteristic equation,  y t  has two exponential 

components 

   1 2
n nj t j ty t e e AK        (1.219) 

Here again, as in Case 2, it is usually preferred to use Euler’s identity to express  y t  in the 

alternate form 

 

     

   
1 2

1 2 1 2

1 2

cos sin cos sin

cos sin

cos sin

n n n n

n n

n n

y t t j t t j t AK

t j t AK

B t B t AK

     

     

 

    

    

  

  (1.220) 

where 1 1 2B     and  2 1 2B j B B  . 

To determine the values of 1B  and 2B  note that 

   1 2sin cosn n n ny t B t B t        (1.221) 

Evaluating equations (1.220) and (1.221) at 0t  , we have 

  1 0B AK y    (1.222) 

and 

  2 0nB y     (1.223) 

so that 

  1 0B y AK    (1.224) 

and 

 
 

2

0

n

y
B





  (1.225) 

Alternately, note that 

  1 2 3cos sin cosn n nB t B t B t        (1.226) 
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where 2 2
3 1 2B B B   and 1 2

1

tan
B

B
   
  

 
, so that  y t  can be written in a slightly more 

compact form as 

    3 cos ny t B t AK      (1.227) 

  



  
Page 55 

 
  

Example 4.1 

 

 

            or 

 

 

As shown by equation (1.7), this parallel RLC circuit can be described by the equation 

 
2

2
4 0L

L

d i
i

dt
    (1.228) 

Hence, the characteristic equation is 

 2 4 0r     (1.229) 

and 

 2n    (1.230) 

 0    (1.231) 

This is an undamped system, with 

 1 2r j   (1.232) 

 2 2r j    (1.233) 

Suppose now that  0 0Li   and  0 1v  .  Then,  
 Ldi t

v t L
dt

 , when evaluated at 0t  , 

yields  
0

1
0 1L

t

di
v

dt L

  , and 

 1 0B    (1.234) 

 2

1

2
B    (1.235) 

Hence, 

  
1

sin 2
2

Li t t   A  for  0t   (1.236) 
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To see what this looks like, we can simulate the circuit with PSpice as follows: 

Example 4.1 
C 1 0 {1/4} IC=1 
L 1 0 1 IC=0   
.TRAN 1 16 0 1m UIC 
.PROBE 
.END 

 

The inductor current is: 

 

and the capacitor voltage is: 
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Example 4.2 

 

 

        or 

 

 

As shown by equation (1.16), this series RLC circuit can be described by the equation 

 
2

2
4 0C

C

d v
v

dt
    (1.237) 

Hence, the characteristic equation is 

 2 4 0r     (1.238) 

and 

 2n    (1.239) 

 0    (1.240) 

This is an undamped system, with 

 1 2r j   (1.241) 

 2 2r j    (1.242) 

Suppose now that  0 0Cv   and  0 1i  .  Then,  
 Cdv t

i t C
dt

 , when evaluated at 0t  , 

yields 
 

 
0

1
0 4C

t

dv t
i

dt C


  , and 

 1 0B    (1.243) 

 2

4
2

2
B     (1.244) 

Hence, 

   2sin 2Cv t t   V  0t   (1.245) 
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To see what this looks like, we can simulate the circuit with PSpice as follows: 

Example 4.2 
L 0 2 1 IC=1 
C 2 0 {1/4} IC=0 
.TRAN 1 16 0 1m UIC 
.PROBE 
.END 

 
 
The capacitor voltage is: 
 

 
 
and the inductor current is: 
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A comparison of the responses of the four parallel circuit examples (1.1, 2.1, 3.1 and 4.1) is 
shown below: 
 
Example 1.1 
C 1 0 {1/4} IC=1 
G 1 0 1 0 5 
L 1 0 1 IC=0 
.TRAN 1 16 0 1m UIC 
.PROBE 
.END 
Example 2.1 
C 1 0 {1/4} IC=1 
G 1 0 1 0 {1/5} 
L 1 0 1 IC=0 
.TRAN 1 16 0 1m UIC 
.PROBE 
.END 
Example 3.1 
C 1 0 {1/4} IC=1 
G 1 0 1 0 1 
L 1 0 1 IC=0 
.TRAN 1 16 0 1m UIC 
.PROBE 
.END 
Example 4.1 
C 1 0 {1/4} IC=1 
L 1 0 1 IC=0 
.TRAN 1 16 0 1m UIC 
.PROBE 
.END 
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A comparison of the responses of the four series circuit examples (1.2, 2.2, 3.2 and 4.2) is shown 
below: 
 
Example 1.2 
L 0 1 1 IC=1 
R 1 2 20 
C 2 0 {1/4} IC=0 
.TRAN 1 16 0 1m UIC 
.PROBE 
.END 
Example 2.2 
L 0 1 1 IC=1 
R 1 2 {4/5} 
C 2 0 {1/4} IC=0 
.TRAN 1 16 0 1m UIC 
.PROBE 
.END 
Example 3.2 
L 0 1 1 IC=1 
R 1 2 4 
C 2 0 {1/4} IC=0 
.TRAN 1 16 0 1m UIC 
.PROBE 
.END 
Example 4.2 
L 0 2 1 IC=1 
C 2 0 {1/4} IC=0 
.TRAN 1 16 0 1m UIC 
.PROBE 
.END 
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